N8O - 16282 ¢/

s
Farmally Verifying Ada Programs which use Real Number Types s /'...

~/
David Sutherland

Odyssey Research Associates

B.1.3.1

~
\

Table of Contents

1 Modeling Machine Arithmetic
2 Modeling Program Execution
3 Error Magnitude in the Model
4 Non-standard Analysis

4.1 Non-standard Models
4.2 Non-standard Models of the Reals

5 Non-standard Models of Execution
6 Specifying Mathematical Programs
7 An Example Verification

8 The Asymptotic Interpretation

B.1.3.2

o o U e N =

10
13

C

We wish to apply farmal verification to programs which use real number
arithmetic operations (hereinafter referred to as mathematical rams).
Formal verification of a program P consists of (1) creating a mathematical
model of P, (2) stating the desired properties of P in a formal logical
langquage, and (3) proving that the mathematical model has the desired
properties of step 2 using a formal proof calculus. If the model faithfully
embodies P, and the properties of step 2 are a correct formalization of the

desired properties of P, the formal verification provides a high degree of
assurance that P is correct.

There are two principal difficulties in formally verifying mathematical
programs:

1. How to model inexact machine arithmetic operations
2. How to state the desired properties of mathematical programs in view of

the fact that such programs in general deliver inexact results (e.g. a
square root program does not compute the exact square root)

1 Modeling Machine Arithmetic

Our starting assumption is that machine arithmetic operations can be
represented as the ideal real number operations followed by rounding. The
operation of rounding is modeled by a cropping function, R, from the real
numbers (denoted by R) to R. The range of (R represents the machine real
numbers, sometimes called the model numbers. This was the approach taken in

(1), [2), and [3) and is consistent with the proposed IEEE standard for
floating point arithmetic [4].

We will assume CR satisfies the following axioms, hereinafter referred to as
"the cropping function axioms'':

~ BAxiom 1: The range of (R is finite.

1. Mansfield, R., A Camplete Axiomatization of Computer Arithmetic I to appear
in the Journal of Mathematics and Computation

2. Holm, John, Floating Point Arithmetic and Program Correctness Proofs, Ph.
D. thesis, Department of Computer Science, Cornell University, August 1980

3. Brown, W. S., A Simple but Realistic Model of Floating-Point Computations,
Computing Science Technical Report No. 83, Bell Laboratories, April 1981

4. A Proposed Standard for Binary Floating Point Arithmetic, Draft 10.0 of
1EEE Task P754, Dec. 1982

B.1.3.3

Axiom 2: R(R(x)) = R(x)

Axiom 3: (R(0) = 0
- Axiom 4: [x <=y <= 2z & (R(x) = R(z)] -> R(x) = R(y)

The first axiom expresses the fact that there are only finitely many machine
real numbers. The second axicm says that the result of a rounding operation
(i.e. a machine real number) is unaffected by further rounding. Note that the
second axiom implies that the range of (R and the set of fixed points of (R
are the same. The third axiom says that 0 is a fixed point of CR, i.e. that
0 is a machine real number. The fourth axiom says that if x and z round to
the same number and y is between x and z then y rourds co the same number as x
and z. As usual when stating axioms in first order logic there are implicit
universal quantifiers in front of the formulas displayed as Axioms 2 through
4.

The cropping function axioms are consistent with the four rounding modes which
the proposed IEEE Standard would require to be supported, namely rounding to
the nearest machine real number, rounding towards 0, rounding towards plus
infinity and rounding towards minus infinity. They are also consistent with
rounding away from zero, a mode which is not mentioned in the proposed IEEE

Standard.
We can derive some useful consequences of the above axioms:
1. (R is monotone, i.e. X <=y -> R(x) <= R(y)
2. There is no machine real between x and CR(x).
3, 0 <¢=x ->0 ¢= R(x) and x <=0 -> R(x) <= 0.
Note that the second statement does not imply that there is no machine real

that is closer to x than CR(x). Again, we do not wish to require this because

the proposed IEEE Standard would require other rounding modes than rounding to
the nearest machine real.

2 Modeling Program Execution

We nmust embed the above ideas about modeling machine arithmetic into a larger
model of program execution. We base our formal model of execution on a simple
informal picture of program execution. We think of the program as executing a
step at a time. At each point in time, the program (or the machine it is
running on) is completely described by (1) the "point" in the program where
control currently is, and (2) the values of each of the program variables.
The program code determines the relationship between the values of variables
ard the point of control before a given step and after that step. We will
assume, for the sake of simplicity, that all variables have a defined value
initially, but this value will be unspecified by the execution model. 1In

B.1.3.4

addition, we will assume that the result of attempting to perform a
computation which is undefined (e.g. division by 0) has a completely
unspecified effect. To use the model, it will usually be necessary to prove
that no undefined ocomputations are attempted, and that the values of program
variables are not referenced before they are assigned to.

How do we represent the above informal picture mathematically? We will
represent “time" by the non-negative integers (which we will hereinafter refer
to as the natural numbers). The "points" where control can reside will be
represented simply by a finite set. The data types of program variables other
than real number variables will be represented by the correspording
mathematical objects, e.g. the data type of integers will be represented as

the mathematical integers. The real data type will be represented by the
range of (R,

The execution of the program will be represented by a collection of functions
giving the history of the flow of control in the program and the histories of
the values of the program variables. Thus, there will be a function from time
(i.e. the natural numbers) into the set of control points (which we will

denote by PC), and for each program variable v, a function from time into the
data type of v.

The functions representing histories will be required to satisfy certain
conditions derived fram the program. For example, if X, Y and 2 are integer
program variables, FX, FY and FZ the corresponding history functions, and at a
certain time t control is at a program instruction

Xi=Y+ 12

then the functions must satisfy the cordition

FX(t + 1) = FY(t) + FZ(t)
For real variables, all operations are the ideal real operations followed by

cropping. For example, if A, B and C are real program variables, FA, FB and

FC the correspording history functions, and at a certain time t control is at
a statement

A :=B +C

then the functions must satisfy the condition

FA(t + 1) = CR(FB(t) + FC(t))

B.1.3.5

3 Error Magnitude in the Model

The cropping function axioms capture certain qualitative properties of CR.
They are not enough to do useful verification, however, because they say
nothing about the size of the error introduced by CR. For example, the
cropping function axioms are satisfied by the zero function. Thus, any
program which we could verify using only the cropping function axioms would
have to be correct even when running on a machine which used the zero function
as its cropping function. Very few useful mathematical programs would be
correct in any sense on such a machine, and thus we could not be able to
verify such programs solely on the basis of the cropping function axioms. We
need some additional axioms on the size of the error introduced by CR.

It is not clear, however, what kind of axioms to add. If we add axioms which
give specific numerical bounds on the size of the error in a certain rarge,
then any verification we do will only apply to machines that meet these
numerical canditions. For a machine that did not meet the corditions, any
verification done on the basis of the conditions would be invalid, despite the
fact that many programs might still run correctly on the machine. On the
other hand, some machines which met the conditions would probably actually
meet much more demanding conditions. There oould be programs which run
correctly on such machines which we cannot v-ove correct because our axioms do
not reflect the high degree of accuracy in the machine.

One solution to this dilemma would be to add non-specific numerical bounds on
the error. In other wards, add a symbol (say, "e") and add an axiam like "the
percentage error between x and CR(x) is always less than e." One could then
verify statements about the accuracy of mathematical programs in terms of e.
For example, if P were a program to compute square roots, one might try to
verify a statement like '"the percentage error between P{x) and the square root
of x is 5*e." If one then wanted a certain degree of accuracy from P, one
could solve for the degree of accuracy in (R that would be necessary to
achieve the desired accuracy from P.

There are several problems with this approach. First of all, it i. very
costly. With present technology in automatic theorem proving, the problem of
generating and proving statements of the kind mentioned above in a mechanical
proof system is intractable in terms of both the amount of computational power
and the amount of human input required. Second, in some situations it forces
us to do an analysis that is more detailed than necessary. Many errors in
mathematical programs occur at a much lower level of numerical complexity.
For erample, ZBRENT is a Fortran subroutine from the IMSL library which is
supposed to find a zero of a user-defined function F given a pair of endpoints
A and B such that the values of F at A and B are of opposite sign. It does
this by gradually moving the endpoints inward, always making sure that the
values of F at the current endpoints are of opposite sign. In the process of
the computation, it generates various pairs of real values X and Y which it
must test to see if F(X) and F(Y) are of opposite sign. It does so by

B.1.3.6

ot

miltiplying F(X) and F(Y) together and testing whether the result is negative
or not. This is an incorrect (not to mention inefficient) test, since it is
possible to have F(X) and F(Y) be small nunbers of opposite sign whose product
is so small that underflow causes the machine to compute 0 for theil; product.
This causes ZBRENT to act as if F(X) and F(Y) are of the same sign, giving
incorrect results in some cases. This programming error is not "numer%cal" in
nature, but is inherent in the notion of inexact (although ‘close’)
computation.

What we would like is a model of machine arithmetic which captures the ideg of
"close" but inexact computation without referring to specific numerical
oconstants. In the next section we present such a model. The node} is based
on an alternate approach to real analysis called non-standard analysis.

4 Non-standard Analysis

Calculus was developed in the eighteenth century based on the notion of
infinitesimals. These were positive entities dx smaller than any actual
positive real but not 0. Furthermore, they obeyed the laws of ordinary real
arithmetic so that one oould carry out ordinary algebraic manipulations like

y = x"2
y +dy = (x + dx)"2
(x + dx)"2 = x"2 + 2 * x * dx + (dx)"2
dy = 2 * x ¥ dx + (ax)"2
dy/dx = 2 * x + dx

In particular the derivative, dy/dx, was the actual quotient of two
infinitesimals.

Attempts in the nineteenth century to Jjustify working with these extended
reals were not successful and a different approach amd proof technique in
terms of limits was adopted instead (the so-called epsilon/delta method.)

In the early 60's logicians showed how to justify working with actual
infinitesimals using so-called "non-standard models of the reals." These
models are ordered algebraic structures which have all the same algebraic and
ordering properties of the standard real numbers, and which contain the
standard reil numbers, but which also oontain additional, non-standard
nunbers. Doing real analysis by means of such non-standard models is called
non-standard analysis.

B.1.3.7

4.1 Non-standard Models

What exactly do we mean by a “non-standard model" of some mathematical object
like the real numbers? First of all, by “mathematical object” we will just
mean a non-empty set. Before we give a precise statement of "non-standard
model", we must discuss the notion of a first-order statement about a
mathematical object.

Suppose we have a mathematical object M. A term of M is an expression which is
of one of the following forms:

1. An element e of M

2. f(t1,...,tn) where f is an n-ary function from M into M and t1,...,tn
are previously defined terms of M.

Thus, if M is the real numbers, then 0, 1 and 1 + exp(5) are terms on M (where
exp stands for the "e-to-the-x" function and + is the usual addition function,
written infix).

A first-order statement about M is a statement of one of the following forms:

1. p(tl,...,tn) where p is an n-ary predicate on M

2. A statement built up from finitely many previously oconstructed
first-arder statements by the use of logical connectives (e.g. '"not",
"and", "or", "if-then-else", etc.)

3. A statement of the form "for all x in M, ..." where ... is a previously
constructed first-order statement involving the variable x.

4. A statement of the form "there exists x in M such that ..." where ... is

a previcusly constructed first-order statement involving the variable
x.

The following are first-order stateme: :s about the real numbers:

0 ¢
not (5 =1)

for all x in the real numbers, for all y in the real numbers,
X+ Yy =Yy + X

there exists x in the real numbers such that for all y in the
real numbers, x*y =y

there exists x in the real numbers such that x*x = -1

B.1.3.8

M

Notice that the first four statements are true of the real numbers, whereas
the fourth is false of the real numbers. A first-order statement about M need
not be a true statement about M; it need merely be of a certain form.

In general, there will be some facts about a given mathematical object M which
can be expressed as first-order statements and some which cannot. The first
four examples above are facts about the real numbers which are expressible as
first-arder statements. A fact about the real numbers which is not
expressible as a first-order statement is the fact that every non-empty set of
real numbers which has an upper bound has a least upper bourd (this property
is called completeness). This statement is not a first-order statement as
written because it refers to sets of reals rather than just individual reals.
Some statements which refer to sets of elements or other higher-order
structures turn out to be equivalent to first-order statements. For example,
the statement "for every bounded set S of real numbers, there is a real number
x that is not in S" is not in the form of a first-order statement, but it 1s
equivalent to the first-order statement "for all x in the real numbers, there
exists y in the real numbers such that x < y." It can be shown that the
campleteness property is not equivalent to any first-order statement.

We will now define what we mean by a non-standard model. Suppose we have scme
set M (e.g. the set of real numbers). A non-standard model of M consists of:

1. A set M'
2. For each element e of M, a corresponding element e' of M'

3. For each n-ary function from M into M, a corresponding n-ary function f'
from M' into M'

4, F?r each n-ary predicate p on M, a corresponding n-ary predicate p' on
M

such that every first-order statement which is true of M is true of M' when
the elements, functions ard predicates in the statement are interpreted as the
corresponding elements, functions and predicates of M'. For example, suppose
R' is a non-standard model of the reals. Let +' denote the binary function on
R' corresponding to the addition function on the reals. Since + is
comutative, and since canmutativity of + is expressible as a first-order
statement (see the examples above), +' must be commutative on R'. On the other
hand, R' need not have the completeness property, and there are non-standard
models of the reals which are not complete.

We will call the elements of M' which caorrespond to elements of M the standard

elements of M'. We can identify elements of M with their ocrresponding
elements of M', and thus speak of M as being a subset of M'. Under this
identification, for each function f and each predicate p on M, the
corresponding f' and p' on M' is extends f and p respectively. We will call a
non-stardard model M' of a mathematical object M a proper non-st:ndard model
of M if there is an element x of M' which is not in M.

It can be shown (we will not give the proof here) that every infinite
mathematical object M has a proper non-standard model M'. The same does not

B.1.3.9

hold for finite mathematical objects. The reason is simple. Suppose
M= {el,...,en}, and M' is a non-standard model of M. It is a true first-arder
statement about M that "for all x in M, x=el or x=e2 or ... or x = en"
(the conjunction is finite). Therefore, the statement "for all x in M',
x=el'orx=e2'or ... or x=en'" is true of M', but this says that the
only elements of M' are the standard elements.

4.2 Non-standard Models of the Reals

What does a proper non-standard model of the reals look like? It can be shown
that every proper non-standard model of the reals consists of the standard
real numbers plus the following three kinds of non-standard numbers:

1. Infinitesimals. These are numbers which are not & tut which are smaller
than any standard non-zero real number.

2. Infinite Numbers. These are numbers which are larger than any standard
real number. There are both positive and negative infinite numbers.
Every proper non-standard model of the reals must have infinite numbers
as well as infinitesimal numbers in order to satisfy the algebraic
property that every non-zero number has a multiplicative inverse. The

multiplicative inverse of a non-zero infinitesimal is an infinite
number,

3. Finite Non-standard Numbers. These are numbers of the form x + i where x
1s a non-zero standard real and i is an infinitesimal. Such numbers are
neither infinitesimal nor infinite, but are not standard either.

In the original formulation of calculus, infinitesimals were informally
thought of as non-zero real numbers which were in some sense “arbitrarily
small". Thus, the notion of infinitesimals lends itself very well to modeling

camputation which is inexact, but whose inexactness can be tiken to be
arbitrarily small.

S5 Non-standard Models of Execution

We will incorporate the idea of machine real operations which differ
infinitesimally fram the ideal operations by using non-standard execution
models. A non-standard execution model will be a representation of program
execution like that described in section 2, but with the standard mathematical
objects replaced by non-standard objects. What exactly does this mean?

First, time will be represented by a proper non-standard model of the natural
numbers. A proper non-standard model of the natural numbers oconsists of the
standard natural numbers with infinite elements added. Thus, the history
functions will be functions whose damain is a proper non-standard model of the
natural numbers.

B.1.3.10

Second, all data types of program variables other than real variables will ?e
represented by proper non-standard models of the standard data types (if
proper non-stardard models exist. For example, the data type "boolean™ 1s
finite and therefore has no proper non-standard models. Finite data types
will be represented in non-standard models of execution by the standard model
of the data type). For example, the data type consisting of the positive and
negative integers must be represented by a proper non-stardard model of the
integers (which just looks like the standard integers with both positive and
negative infinite numbers added).

What about the data type of machine real numbers? 1In section 2 we obtained
the machine real data type by choosing a cropping function on the ideal reals
and taking its range. We cannot replace this type by a proper non-standard of
itself, beciuse by the first croppina function axiom, this set is finite and
so has no proper non-standard models. Suppose instead that we start with a
proper non-standard model of the reals R' and a function (R fram R' into R'
satisfying the cropping functiorn axioms and the additional axiom (called the
"error axiam'') that for all finite x in R', (R(x) - x is infinitesimal. This
axiom formalizes the statement that on all numbers that are not "large" (i.e.
not infinite), the roundoff error is "small" (i.e. infinitesimal). We will
use the notation "x == y" to stand for "x - y is infinitesimal."

Unfortunately, there are no such cropping functions. In urder far the error
axiom to be met, the range of CR must be infinite, which contradicts the first
cropping function axiom.

How can we resolve this inconsistency? There are definite cases in which we
make use of the first cropping function axiom in verification, so we cannot
simply abandon it. What we will do instead is, rather than assuming that (R
satisfies the first cropping runction axiom, assume that CR satisfies all
first-order statements implied by the first cropping funct.on axiom. It can
be shown that the first cropping function axian is not equivalent to any
first-order statement, so this is a true weakening of our set of axioms. In
addition, it can be shown that the resulting weaker set of axioms is

consistent. The first-order consequences of the first cropping function axiom
will be more than enough to verify most mathematical programs. In summary, we

will represent the machine real data type in a non-standard model of execution
as the ramge of a function CR fram a non-standard model of the reals into
itself such that (R satisfies cropping function axioms 2 throuch 4, the error
axiom given above, and all first-order statements implied by the first
cropping function axiom.

6 Specifying Mathematical Programs

How do we state the properties of mathematical programs we want to prove?
Suppose we restrict ourselves to considering programs whose purpose is just to
compute some real-valued function, If f is a real-values function of n
arquments, and P is a program to compute f with parameters Al,...,An, we can
state the specification of P in terms of the above formalism simply as "for

B.1.3.11

PR T

all inputs x1,...,xn, P(x1,...,5m) == £(x1,...,5n)" or, in slightly more
detail, "for all inputs x1,...,xn, if P is executed with the initial values.of
Al,vs4,An being x1,...,50 respectively, then P will eventually terminate with
output == £(x1,...,%)." In terms of the above formalism, P has terminated at
a time t if PC(t) = stop where "stop" is a control point at the end of the
program.

7 An Example Verification

To illustrate the use of the model, we will verify a program which computes
the square root function by Newton's method. The proof will be informal. We
will denote the ideal square root of a number x by root(x).
Newton's method begins with an initial “quess" at the square root. The guess
is then refined by an iterative process. At each step, the current guess g is
replaced by (g + (x/g))/2 (where x is the number whose square root is being
camputed). The only facts about Newton's method we will need to know for the
verification are that if x is non-negative and the initial guess is bigger
than root(x), then:

1. All sucoeeding guesses will be bigger than roci(x).

2. Each new guess will be less than the previous guess.
We now give the program. We will adopt the convention of writing the s ls
for machine vreal operations "doubled", e.g. machine real addition will be
denoted by "++", to distinguish machine operations from ideal operations

{which will be denoted by the usual "undoubled" symbols). The value in RESULT
is output when the program terminates. The program is:

SCRT(X:REAL) :REAL
RESULT := X ++ 1
LOOP
IF RESULT ** RESULT ¢= X
THEN LEAVE
IF RESULT <= (RESULT ++ (X//RESULT))}//2
THEN LEAVE
RESULT := (RESULT ++ (X//RESULT))//Z

END

B.1.3.12

END

Note that the conditions for leaving the loop are not the kind of conditions
e usually sees in programs of this type. The usual approach to terminating
iterative processes of this type involves either terminating when a certain
degree of accuracy is reached, or when a certain bound on the number of
iterations is reached, or both. 1In SQRT, the iteration is terminated when the
iterative process in the machine ceases to act like the ideal Newton's method
in one of the two ways mentioned above.

We will now verify that if SQRT is executed with the initial wvalue of X
non-negative and finite, then execution eventually terminates with

RESULT == root(the initial value of x)

We will perform the verification by establishing a series of lemmas, leading
up to the result we want.

Lemmg 0: if x and y are non-negative and x == y, then root(x) == root(y}.
Proof: the proof breaks into 2 cases:

Case 1: x and y are infinitesimal. The square of a non-infinitesimal number
is non-infinitesimal, so root(x) and root(y) must therefore be infinitesimal,
and thus the difference between them is also infinitesimal,

Case 2: either x or y is not infinitesimal. Since the two numbers differ by
an infinitesimal, if one is not infinitesimal the other is also not. Since

the square of an infinitesimal is infinitesimal, root(x) amd root(y) are also
non-infinitesimal, By algebra, we have

X - y = (root(x) + root(y))*{root(x) - root(y))

Since the left side is infinitesimal and the first factor of the right side is
not, the secord factor of the right side must be infinitesimal.

Lemma 1: Whenever (RESULT ++ (ix//RESULT))//2 is computed, RESULT is not O.

Proof: Suppose not. Let t be the earliest time such that PC(t) is at a
statement where (RESULT ++ (X//RESULT))//2 is computed and RESULT = 0 at time
t. Prior to t, the program must have been executing normally, since division
by 0 is the only exceptional oondition that can arise (we are ignoring
exceptional corditions such as STORAGE ERROR or overflow which cannot be
analyzed on the basis of the program's text).

The only points in the program where (RESULT ++ (X//RESULT))//2 is computed
are in the second conditional irside the loop and in the subsequent assignment
statement. Since t is the earliest time when a division by 0 is attempted,
and program execution before t is normal, we can conclude that:

B.1.3.13

s T

1. Control at time t must be at the second conditional.
2. Control at time t - 1 must be at the first conditional with RESULT = 0.

3. X at time t - 1 must be negative (by cropping function axiom 3, if
RESULT is 0 then RESULT ** RESULT is also 0).

But X is assumed to be non-negative initially, and since no assignments to X
can have taken place in the course of normal execution prior to t, X must be
non-negative at time t - 1, a contradiction.

We can therefore assume for the rest of the lemmas that the program executes
nomally at all times.

Lemma 2: The value of X is always the same as the initial value.

Proof: trivial, since there are no steps in the program which assign to X.
Lemma 3: SORT halts.

Proof: Suppose not. In this case, the set of times t where the value of
RESULT decreases from time t to time t + 1 has no upper bound (else at some
point control would leave the loop at the second conditional). This fact can
be expressed as a first-order statement using the history function for RESULT
(call it FRESULT) as follows: '"for all times t there exists a time t' such
that t < t' and FRESULT(t' + 1) < FRESULT(t')." Howvere, the negation of this
statement is a first-order statement which is implied by the first cropping
function axiom, a contradiction.

Lemma 4: After the initial assignment to RESULT, the value of RESULT is always
>= 0 and <= X ++ 1,

Proof: The proof is by induction on time (i.e induction on the number of steps
that have been executed). Immediately after the initial assignment to RESULT,
RESULT = X ++ 1 so certainly RESULT <= X ++ 1, We must therefore establish
that 0 <= X ++ 1.

Since X and 1 are finite, X + 1 is finite and so by the error axicm,
X ++ 1 = R(X + 1) ==X+ 1.1 is not an infinitesimal, arnd X is non-negative,
so X + 1 is at least distance 1 from 0. Since rounding only introduces an
infinitesimal error, and the distance between X + 1 and 0 is not
infinitesimal, X ++ 1 cannot be 0.

To complete the induction, we must show that at every step in execution, if
0 <= RESULT <= X ++ 1 is true before the step, then it is true after. For
execution steps which are not executions of the assignment statement inside
the loop, this is trivial, since no other statement changes the wvalue of
RESULT. Suppose a given step is an execution of the assignment statement
inside the loop. First of all, this means that control must have passed
throught the preceding conditional, so the next value of RESULT must be less
than the previaus value, so if RESULT is <= X ++ 1 before the assignment then
the same is true after. Second, as shown in Lemma 2, in order for control to
have reached this statement at all, RESULT must be non-zero, so it is strictly

B.1.3.14

positive., The value of X is non-negative. Therefore, since R of a
non-negative number is non-negative, (RESULT ++ (X//RESULT))//2 must be
non-negative. This completes the induction.

Lemma 5: RESULT is always finite.

Proof: Since 0 and X ++ 1 are finite and RESULT is always between them, RESULT
is also finite.

Lemma 6: When SQRT terminates, RESULT == root(initial value of X).

Proof: We will denote the value of RESULT at termination by R. The proof
breaks into three cases:

Case 1: R** R=X. By Leimma 5, R is finite so by the error axiom,
R * R == R ** R = X = initial value of X and the conclusion follows by Lemma
0.

Case 2: R **¥ R ¢ X, Claim: R *R < X, If not, then R * R »>= X, so by the
montonicity of CR, R ** R = CR(R * R) <= CR(X) = X, a oontradiction. The
initial value of RESULT has square > X, so the assignment statement inside the
loop must have been executed at least once before termination. Therefore,
there exists a previous value of RESULT, call it RP, such that
R = (RP ++ (X//RP))//2 <,RP and RP ** RP > X. By the same reasoning as above,
the second statement implies that RP * RP > X. Therefore 0 < X/RP ¢ RP so X/RP
is finite, so (RP ++ (X//RP))//2 == (RP + (X/RP))/2. But the left side is less
than root(x), while the right side is greater than root(x) by property of
(ideal) Newton's method. When two numbers which differ by an infinitesimal
are on either side of a fixed nurber, they each differ from that fixed number
by an infinitesimal. This establishs the conclusion.

Case 3: R ** R > X, In this case, the program must have terminated because
R <= (R ++ (X//R))//2. The assumption of the case implies that R ¥ R > X as
above, so 0 ¢ X/R ¢ R so X/R is finite, so (R ++ (X//R))//2 == (R + (X/R))/2.
The left side is »>= R, while the right side is < R by property of (ideal)
Newton's method. Therefore, R - ({R + (X/R)}/2) is infinitesimal.
Rearranging algebraically, we get {R¥*R - X)/(2*R*R) is infinitesimal. The

denominator is finite, so the numerator must be infinitesimal. The conclusion
follows from Lemma O.

8 The Asvmptotic Interpretation

What does verification of a mathematical program executing over a non-standard
moxdel of the reals tell us about actual execution on a standard machine? This
guestion is similar to the question 'what does a proof in non-standard
analysis involving infinitesimals show about analysis in the standard reals?"

We will explain heuristically how non-standard analysis proofs relate to
staruard analysis, and arque by analogy that the same relation holds between
verification of non-standard execution and execution on a standard machine.

B.1.3.15

It can (and has) been proved that the analogy is actually valid, but the proof
is beyond the scope of this paper.

Consider the non-standard analysis proof that the derivative of the x"2
function is 2*x. It goes as follows: take an arbitrary infinitesimal i and
compute ((x + i)"2 - x"2)/i. The result is 2*x + i. Thus, the value of the
difference quotient for any infinitesimal is only infinitesimally different
from 2*x. This is actually a proof that the standard x"2 function has
derivative 2*x in the usual sense, although it takes some mathematical logic
to prove the connection.

What does it mean to say that the derivative of x"2 is 2*x in standard
analysis? It means that the limit of the expression (x + h)"2. - x"2)/h as h
goes to 0 is 2*x. Thus, a non-standard analysis proof about numbers being
infinitesimally different establishes a standard fact about behavior of an
expression as a certain quantity gets smaller and smaller.

The same relation holds between non-standard and standard execution. Our
proof that if x is non-negative and finite then SQRT(x) == root(x) actually
establishes that if we run SORT on a sequence of machines whose (R is more and
more precise, the output of SQRT(x) will converge to root(x). More generally,
if we have any real-valued ideal function f and a program F and we can prove
in the non-standard formalism that for all finite x in the damain of f,
F(x) == £(x) then this will establish that if we run F on a sequence of more
and more precise machines, the output of F(x) will oonverge to f£{x). To put

it another way, we can obtain any degree of precision in F(x) by computing
F(x) on a sufficiently precise machine.

B.1.3.16

